
Efficient representation of
de Bruijn Graphs

Assembly data is big

For very large datasets, even after filtering, a hash  
table over all k-mers may be too big.

Why is a hash table big?

How can we do better?

What if we just wanted “approximate” occurrence?

What if we just want to know “if” a k-mer is present?

Bloom Filters
Originally designed to answer probabilistic membership
queries:

Is element e in my set S?

If yes, always say yes

If no, say no with large probability

False positives can happen; false negatives cannot.

Bloom Filters

For a set of size N, store an array of M bits
Use k different hash functions, {h0, …, hk-1}
To insert e, set A[hi(e)] = 1 for 0 < i < k
To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007

Bloom Filters

Image by David Eppstein - self-made, originally for a talk at WADS 2007

If hash functions are good and sufficiently
independent, then the probability of false positives is
low and controllable.

How low?

False Positives

*analysis of Mitzenmacher and Upfal

Let q be the fraction of the m-bits which remain as 0 after n
insertions.

The probability that a randomly chosen bit is 1 is 1-q.

But we need a 1 in the position returned by k different hash
functions; the probability of this is (1-q)k

We can derive a formula for the expected value of q,
for a filter of m bits, after n insertions with k different hash
functions:

E[q] = (1 - 1/m)kn

False Positives

*analysis of Mitzenmacher and Upfal

Mitzenmacher & Unfal used the Azuma-Hoeffding
inequaltiy to prove (without assuming the probability of
setting each bit is independent) that

Pr(|q � E [q]| � �

m
) 2exp(�2

�2

m
)

That is, the random realizations of q are highly
concentrated around E[q], which yields a false positive
prob of:
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�

1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

False Positives
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�

1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k = (m/n) ln 2 ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob

p = (1� e�(m
n ln 2) n

m)(
m
n ln 2) =)

ln p = �m

n
(ln 2)2 =)

m = � n ln p

(ln 2)2

False Positives
X

t

Pr(q = t)(1� t)k ⇡ (1� E[q])k =

1�

1� 1

m

�kn!k

⇡ (1� e�
kn
m)k

This lets us choose optimal values to achieve a target false
positive rate. For example, assume m & n are given. Then we
can derive the optimal k

k = (m/n) ln 2 ⇒ 2-k ≈ 0.6185 m/n

We can then compute the false positive prob

p = (1� e�(m
n ln 2) n

m)(
m
n ln 2) =)

ln p = �m

n
(ln 2)2 =)

m = � n ln p

(ln 2)2

given an expected
elems

and a desired
false positive rate

we can compute
the optimal size and
of has functions

Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing
a De Bruijn graph?

A given (k-1)-mer can only have 2*|Σ| neighbors;
|Σ| incoming and |Σ| outgoing neighbors — for

genomes |Σ| = 4

To navigate in the De Bruijn graph, we can simply
query all possible successors, and see which are

actually present.

Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing a
De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our
data set, and say I give you one k-mer that is truly present.

We now have a “navigational” representation of the
De Bruijn graph (can return the set of neighbors of a
node, but not select/iterate over nodes); why?

 Bloom Filters & De Bruijn Graphs
But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a lossless datastructure
based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce
the concept of “cascading” Bloom filters

First, some bounds

Critical False Positives

Chikhi & Rizk

Critical False Positives

Chikhi & Rizk

“true”
k-mers

encoded in
BF, but not
“reachable”

critical FP

Idea of Chkhi and Rizk

* slide courtesy of Salikhov, Sacomoto & Kucherov

Assume we want to represent specific set T0 of k-mers
with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only
those having k-1 overlap with k-mers known to be in the graph.

The set T1 of “critical false positives” (false neighbors of true
k-mers) is much smaller than the set of all false positives and
can be stored explicitly

Storing B1 and T1 is much more space efficient that other
exact methods for storing T0. Membership of w in T0 is tested
by first querying B1, and if w ∈ B1, check that it is not in T1.

false positives of B1 T0

�  Represent T0 by Bloom filter B1

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  Represent T0 by Bloom filter B1

�  Compute T1 (‘critical false positives’) and represent it e.g.
by a hash table

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  Represent T0 by Bloom filter B1

�  Compute T1 (‘critical false positives’) and represent it e.g.
by a hash table

�  Result (example): 13.2 bits/node for k=27 (of which 11.1
bits for B1 and 2.1 bits for T1)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Improving on Chikhi and Rizk’s method

�  Main idea: iteratively apply the same construction to T1 i.e.
encode T1 by a Bloom filter B2 and set of ‘false-false
positives’ T2, then apply this to T2 etc.

�  ☞ cascading Bloom filters

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  further encode T1 via a Bloom filter B2 and set T2, where
T2⊆T0 is the set of k-mers stored in B2 by mistake
(‘false2 positives’)

T2

* slide courtesy of Salikhov, Sacomoto & Kucherov

false positives of B1 T0

T1

�  further encode T1 via a Bloom filter B2 and set T2, where
T2⊆T0 is the set of k-mers stored in B2 by mistake
(‘false2 positives’)

�  iterate the construction on T2
�  we obtain a sequence of sets T0, T1, T2, T3, … encode by

Bloom filters B1, B2, B3, B4, … respectively
�  T0⊇T2⊇T4⊇… , T1⊇T3⊇T5⊇

T2 T3 T4 T5

* slide courtesy of Salikhov, Sacomoto & Kucherov

Correctness

Lemma [correctness]: For a k-mer w, consider the smallest i such
that w∉Bi+1. Then w∈T0 if i is odd and w∉T0 if i is even.

�  if w∉B1 then w∉T0
�  if w∈B1, but w∉B2 then w∈T0
�  if w∈B1, w∈B2, but w∉B3 then w∉T0
�  etc.

false positives of B1 T0

T1
T2 T3 T4 T5

* slide courtesy of Salikhov, Sacomoto & Kucherov

Assuming infinite number of filters

Let N=|T0| and r=mi/ni is the same for every Bi. Then the
total size is

rN + 6rNcr + rNcr + 6rNc2r + rNc2r +... =N(1+6cr)

r
1− cr

|B1| |B2| |B3| |B4| |B5|

The minimum is achieved for r=5.464, which yields the
memory consumption of 8.45 bits/node

* slide courtesy of Salikhov, Sacomoto & Kucherov

Infinity difficult to deal with ;)

-  In practice we will store only a small finite number of filters
B1, B2,…, Bt together with the set Tt stored explicitely

-  t=1 ➟ Chkhi&Rizk’s method
-  The estimation should be adjusted, optimal value of r has to be

updated, example for t=4

Table: Estimations for t=4. Optimal r and
corresponding memory consumption

* slide courtesy of Salikhov, Sacomoto & Kucherov

Compared to Chikhi&Rizk’s method

Table: Space (bits/node) compared to Chikhi&Rizk
for t=4 and different values of k.

* slide courtesy of Salikhov, Sacomoto & Kucherov

We can cut down a bit more …

-  Rather than using the same r for all filters B1, B2,…, we
can use different properly chosen coefficients r1,r2, …

-  This allows saving another 0.2 – 0.4 bits/k-mer

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments I: E.Coli, varying k

-  10M E.Coli reads of 100bp
-  3 versions compared: 1 Bloom (=Chikhi&Rizk), 2

Bloom (t=2) and 4 Bloom (t=4)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments II: Human dataset

-  564M Human reads of 100bp (~17X coverage)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Experiments I (cont)

* slide courtesy of Salikhov, Sacomoto & Kucherov

Efficiently enumerating cFP

Chicki & Rizk (2013) : https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

Note: Requires having
the full set on disk,
and being able to

make multiple passes
over it.

https://almob.biomedcentral.com/articles/10.1186/1748-7188-8-22

Bloom filters & De Bruijn Graphs
So, we can make very small representation of the dBG.
But it’s navigational! We can also make them:

Dynamic &
membership

and even
weighted

Other AMQs (the CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k)

p-bits
=

* Idea goes back at least to Knuth (TACOP vol 3)

Other AMQs (the CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

p-bits

Determines position in
array of size 2q r-bit slots

=

* Idea goes back at least to Knuth (TACOP vol 3)

Other AMQs (the CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits

Determines position in
array of size 2q r-bit slots

Value stored in

r-bit slot (fingerprint)

=

* Idea goes back at least to Knuth (TACOP vol 3)

The CQF

Approximate Multiset Representation

Works based on quotienting & fingerprinting keys

Careful encoding allows low-overhead storage of element counts

Careful engineering & use of efficient rank & select leads to a fast,
cache-friendly data structure

Other efficient representations as well

In addition to the theoretical bounds, this paper
introduced an algorithm for constructing the contigs of
the compacted dBG efficiently (bcalm), and an
efficient representation based on building the FM-
index over these contigs (dbgFM).

CMSC423:
Wrap-up and FAQ

End of Semester FAQ
1. When is the final?

• Thurs. May. 14 (8-10AM)

2. Where is the final?
• It will be made available on ELMS. I am working to optimize the

format.

3. What content will be on the final?
• Technically, you are responsible for all material
• The final will cover content we have covered since the midterm

4. What will the format of the exam be?
• Same as the midterm. Short answer & longer-form “thinking”

questions. The final will not be proportionally longer —you will
have more time per-question than the midterm.

5. How can I prepare for the final?
• Go over the lectures, go over your projects, go over the relevant

chapters in the book, google about material you still don’t get,
ask us questions on piazza. STUDY AND BE COMFORTABLE
WITH DYNAMIC PROGRAMMING!

End of Semester FAQ

6. What grade will I get?
• I don’t know (yet)
• The class will be curved so that the median grade is a B, with

+/- grades going in ~3-4 point increments from there.
• The P/F system for the semester is OPT-OUT, if you don’t opt-

out you get a P or F.
• A P is anything D- or above

7. Other questions?

What we didn’t cover.

Most of bioinformatics and computational biology:

• all of “long read” technology and method
development

• metagenomics
• biological network analysis
• “systems” biology (e.g. regulatory inference)
• biostatistics and statistical interpretation of

genomics results
• modern approaches of machine learning in

bioinformatics (deep learning)
• much, much more.

