## Efficient representation of de Bruijn Graphs

## Assembly data is big

For very large datasets, even after filtering, a hash table over all k-mers may be too big.

Why is a hash table big?
How can we do better?

What if we just want to know "if" a k-mer is present?


What if we just wanted "approximate" occurrence?

## Bloom Filters

Originally designed to answer probabilistic membership queries:

Is element e in my set S ?
If yes, always say yes
If no, say no with large probability

False positives can happen; false negatives cannot.

## Bloom Filters

For a set of size N , store an array of M bits
Use $k$ different hash functions, $\left\{h_{0}, \ldots, h_{k-1}\right\}$
To insert e, set $A\left[h_{i}(e)\right]=1$ for $0<i<k$
To query for $e$, check if $A\left[h_{i}(e)\right]=1$ for $0<i<k$


Image by David Eppstein - self-made, originally for a talk at WADS 2007

## Bloom Filters

If hash functions are good and sufficiently independent, then the probability of false positives is low and controllable.

How low?



Image by David Eppstein - self-made, originally for a talk at WADS 2007

## False Positives

Let q be the fraction of the m -bits which remain as 0 after n insertions.

The probability that a randomly chosen bit is 1 is $1-\mathrm{q}$.

But we need a 1 in the position returned by k different hash functions; the probability of this is $(1-q)^{k}$

We can derive a formula for the expected value of $q$, for a filter of $m$ bits, after $n$ insertions with $k$ different hash functions:

$$
\mathrm{E}[\mathrm{q}]=(1-1 / \mathrm{m})^{\mathrm{kn}}
$$

## False Positives

Mitzenmacher \& Unfal used the Azuma-Hoeffding inequaltiy to prove (without assuming the probability of setting each bit is independent) that

$$
\operatorname{Pr}\left(|q-E[q]| \geq \frac{\lambda}{m}\right) \leq 2 \exp \left(-2 \frac{\lambda^{2}}{m}\right)
$$

That is, the random realizations of $q$ are highly concentrated around $\mathrm{E}[\mathrm{q}]$, which yields a false positive prob of:
$\sum_{t} \operatorname{Pr}(q=t)(1-t)^{k} \approx(1-E[q])^{k}=\left(1-\left[1-\frac{1}{m}\right]^{k n}\right)^{k} \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}$

## False Positives

$\sum_{t} \operatorname{Pr}(q=t)(1-t)^{k} \approx(1-E[q])^{k}=\left(1-\left[1-\frac{1}{m}\right]^{k n}\right)^{k} \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}$
This lets us choose optimal values to achieve a target false positive rate. For example, assume $m \& n$ are given. Then we can derive the optimal $k$

$$
k=(\mathrm{m} / \mathrm{n}) \ln 2 \Rightarrow 2^{-\mathrm{k}} \approx 0.6185 \mathrm{~m} / \mathrm{n}
$$

We can then compute the false positive prob

$$
\begin{array}{r}
p=\left(1-e^{-\left(\frac{m}{n} \ln 2\right) \frac{n}{m}}\right)^{\left(\frac{m}{n} \ln 2\right)} \Longrightarrow \\
\ln p=-\frac{m}{n}(\ln 2)^{2} \Longrightarrow \\
m=-\frac{n \ln p}{(\ln 2)^{2}}
\end{array}
$$

## False Positives

$\sum_{t} \operatorname{Pr}(q=t)(1-t)^{k} \approx(1-E[q])^{k}=\left(1-\left[1-\frac{1}{m}\right]^{k n}\right)^{k} \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}$
This lets us choose optimal values to achieve a target false positive rate. For example, assume $m$ \& $n$ are given. Then we can derive the optimal $k$

$$
k=(\mathrm{m} / \mathrm{n}) \ln 2 \Rightarrow 2^{-k} \approx 0.6185 \mathrm{~m} / \mathrm{n}
$$

We can then compute the false positive prob

$$
\begin{gathered}
p=\left(1-e^{-\left(\frac{m}{n} \ln 2\right) \frac{n}{m}}\right)^{\left(\frac{m}{n} \ln 2\right)} \Longrightarrow \quad \begin{array}{c}
\text { given an expected } \\
\text { \# elems } \\
\ln p=-\frac{m}{n}(\ln 2)^{2} \\
\text { and a desired }
\end{array} \\
\text { false positive rate } \\
\text { we can compute } \\
\text { the optimal size and } \\
\text { \# of has functions }
\end{gathered}
$$

## Detour: Bloom Filters \& De Bruijn Graphs

How could this data structure be useful for representing a De Bruijn graph?


A given (k-1)-mer can only have $2^{*}|\Sigma|$ neighbors; $|\Sigma|$ incoming and $|\Sigma|$ outgoing neighbors - for genomes $|\Sigma|=4$

To navigate in the De Bruijn graph, we can simply query all possible successors, and see which are actually present.

## Bloom Filters \& De Bruijn Graphs

How could this data structure be useful for representing a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our data set, and say I give you one k-mer that is truly present.

We now have a "navigational" representation of the De Bruijn graph (can return the set of neighbors of a node, but not select/iterate over nodes); why?

## Bloom Filters \& De Bruijn Graphs

But, a Bloom filter still has false-positives, right?
May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi \& Rizk, WABI 2012, present a lossless datastructure based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce the concept of "cascading" Bloom filters

# First, some bounds 

On the Representation of De Bruijn Graphs

We use the term membership data structure to refer to a way of representing a dBG and answering $k$-mer membership queries. We can view this as a pair of algorithms: (CONST, MEMB). The CONST algorithm takes a set of $k$-mers $S$ (i.e., a dBG) and outputs a bit string. We call const a constructor, since it constructs a representation of a dBG . The memb algorithm takes as input a bit string and a $k$-mer $x$ and outputs true or false. Intuitively, memb takes a representation of a dBG created by CONST and outputs whether a given $k$ mer is present. Formally, we require that for all $x \in \Sigma^{k}, \operatorname{memb}(\operatorname{CONST}(S), x)$ is true if and only if $x \in S$.

An NDS is a pair of algorithms, CONST and NBR. As before, CONST takes a set of $k$-mers and outputs a bit string. NBR takes a bit string and a $k$-mer and outputs a set of $k$-mers. The algorithms must satisfy that for every dBG $S$ and a $k$-mer $x \in S$, $\operatorname{NBR}(\operatorname{Const}(S)$, $x)=\operatorname{ext}(x) \cap S$. Note that if $x \notin S$, then the behavior of $\operatorname{Nbr}(\operatorname{const}(S), x)$ is undefined. We observe that a membership data structure immediately implies an NDS because an NBR query can be reduced to eight MEMB queries.

In this section, we prove that a navigational data structure on de Bruijn graphs needs at least 3.24 bits per $k$-mer to represent the graph:

Theorem 1. Consider an arbitrary NDS and let Const be its constructor. For any $0<\epsilon<1$, there exists a $k$ and $x \subseteq \Sigma^{k}$ such that $|\operatorname{CoNST}(x)| \geq|x| \cdot(c-\epsilon)$, where $c=8-3 \lg 3 \approx 3.25$.

## Critical False Positives


(a)


## Critical False Positives



Chikhi \& Rizk

## Idea of Chkhi and Rizk

Assume we want to represent specific set T0 of k-mers with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only those having k -1 overlap with k -mers known to be in the graph.

The set T1 of "critical false positives" (false neighbors of true $k$-mers) is much smaller than the set of all false positives and can be stored explicitly

Storing B1 and T1 is much more space efficient that other exact methods for storing TO. Membership of win T0 is tested by first querying B 1 , and if $\mathrm{w} \in \mathrm{B} 1$, check that it is not in T 1 .


- Represent $T_{0}$ by Bloom filter $B_{1}$

- Represent $T_{0}$ by Bloom filter $B_{1}$
- Compute $\mathrm{T}_{1}$ ('critical false positives') and represent it e.g. by a hash table

- Represent $T_{0}$ by Bloom filter $B_{1}$
- Compute $\mathrm{T}_{1}$ ('critical false positives') and represent it e.g. by a hash table
- Result (example): 13.2 bits/node for $k=27$ (of which 11.1 bits for $B_{1}$ and 2.1 bits for $T_{1}$ )


## Improving on Chikhi and Rizk's method

- Main idea: iteratively apply the same construction to $T_{1}$ i.e. encode $T_{1}$ by a Bloom filter $B_{2}$ and set of 'false-false positives' $T_{2}$, then apply this to $T_{2}$ etc.
- cascading Bloom filters

* slide courtesy of Salikhov, Sacomoto \& Kucherov

- further encode $T_{1}$ via a Bloom filter $B_{2}$ and set $T_{2}$, where $\mathrm{T}_{2} \subseteq \mathrm{~T}_{0}$ is the set of $k$-mes stored in $\mathrm{B}_{2}$ by mistake ('false ${ }^{2}$ positives')

- further encode $T_{1}$ via a Bloom filter $B_{2}$ and $\operatorname{set} T_{2}$, where $T_{2} \subseteq T_{0}$ is the set of $k$-mers stored in $B_{2}$ by mistake ('false ${ }^{2}$ positives')
- iterate the construction on $\mathrm{T}_{2}$
- we obtain a sequence of sets $T_{0}, T_{1}, T_{2}, T_{3}, \ldots$ encode by Bloom filters $B_{1}, B_{2}, B_{3}, B_{4}, \ldots$ respectively
- $\mathrm{T}_{0} \supseteq \mathrm{~T}_{2} \supseteq \mathrm{~T}_{4} \supseteq \ldots, \mathrm{~T}_{1} \supseteq \mathrm{~T}_{3} \supseteq \mathrm{~T}_{5} \supseteq$


Lemma [correctness]: For a $k$-mer $w$, consider the smallest $i$ such that $w \notin B_{i+1}$. Then $w \in T_{0}$ if $i$ is odd and $w \notin T_{0}$ if $i$ is even.

- if $w \notin B_{1}$ then $w \notin T_{0}$
- if $w \in B_{1}$, but $w \notin B_{2}$ then $w \in T_{0}$
- if $w \in B_{1}, w \in B_{2}$, but $w \notin \mathrm{~B}_{3}$ then $w \notin \mathrm{~T}_{0}$
- etc.


## Assuming infinite number of filters

Let $N=\left|\mathrm{T}_{0}\right|$ and $r=m_{i} / n_{i}$ is the same for every $\mathrm{B}_{\mathrm{i}}$. Then the total size is
$\underbrace{r N}_{\left|B_{1}\right|}+\underbrace{6 r N c^{r}}_{\left|B_{2}\right|}+\underbrace{r N c^{r} \mid}_{\left|B_{3}\right|}+\underbrace{6 r N c^{2 r}}_{\left|B_{4}\right|}+\underbrace{r N c^{2 r}}_{\left|B_{5}\right|}+\ldots=N\left(1+6 c^{r}\right) \frac{r}{1-c^{r}}$

The minimum is achieved for $r=5.464$, which yields the memory consumption of 8.45 bits/node

## Infinity difficult to deal with ;)

- In practice we will store only a small finite number of filters $B_{1}, B_{2}, \ldots, B_{t}$ together with the set $T_{t}$ stored explicitely
- $t=1$ $" \rightarrow$ Chkhi\&Rizk's method
- The estimation should be adjusted, optimal value of $r$ has to be updated, example for $\mathrm{t}=4$

| $k$ | optimal $r$ | bits per $k$-mer |
| :---: | :---: | :---: |
| 16 | 5.776737 | 8.555654 |
| 32 | 6.048557 | 8.664086 |
| 64 | 6.398529 | 8.824496 |
| 128 | 6.819496 | 9.045435 |

Table: Estimations for $t=4$. Optimal $r$ and corresponding memory consumption

## Compared to Chikhi\&Rizk's method

| $k$ | "Optimal" (infinite) <br> Cascading Bloom Filter | Cascading Bloom Filter <br> with $t=4$ | Data structure <br> of Chikhi \& Rizk |
| :---: | :---: | :---: | :---: |
| 16 | 8.45 | 8.555654 | 12.0785 |
| 32 | 8.45 | 8.664086 | 13.5185 |
| 64 | 8.45 | 8.824496 | 14.9585 |
| 128 | 8.45 | 9.045435 | 16.3985 |

Table: Space (bits/node) compared to Chikhi\&Rizk for $t=4$ and different values of $k$.

## We can cut down a bit more ...

- Rather than using the same $r$ for all filters $B_{1}, B_{2}, \ldots$, we can use different properly chosen coefficients $r_{1}, r_{2}, \ldots$
- This allows saving another $0.2-0.4$ bits/k-mer


## Experiments I: E.Coli, varying $k$

- 10M E.Coli reads of 100bp
- 3 versions compared: 1 Bloom (=Chikhi\&Rizk), 2 Bloom ( $t=2$ ) and 4 Bloom ( $t=4$ )




## Experiments II: Human dataset

- 564M Human reads of 100bp (~17X coverage)

| Method | 1 Bloom | 2 Bloom | 4 Bloom |
| :---: | :---: | :---: | :---: |
| Construction time (s) | 40160.7 | 43362.8 | 44300.7 |
| Traversal time (s) | 46596.5 | 35909.3 | 34177.2 |
| $r$ (bits) | 11.10 | 8.10 | 6.56 |
|  | $B_{1}=3250.95$ | $B_{1}=2372.51$ | $B_{1}=1921.20$ |
| $B_{2}=292.65$ | $B_{2}=496.92$ <br> $B_{3}=83.39$ <br> $B_{4}=21.57$ |  |  |
| Floom filters size (MB) |  |  | $T_{4}=24.07$ |
| Total size (MB) | 3796.89 | 2524.12 | 2547.15 |
| Size (bits $/ k$-mer) | $\mathbf{1 2 . 9 6}$ | $\mathbf{1 0 . 3 7}$ | $\mathbf{8 . 7 0}$ |

* slide courtesy of Salikhov, Sacomoto \& Kucherov


## Experiments I (cont)

dBG traversal time

dBG construction time


# Efficiently enumerating cFP 

```
Algorithm 1 Constant-memory enumeration of critical
false positives
    1: Input: The set \(\mathcal{S}\) of all nodes in the graph, the Bloom
    filter constructed from \(\mathcal{S}\), the maximum number \(M\)
    of elements in each partition (determines memory
    usage)
    Output: The set cFP
    Store on disk the set \(\mathcal{P}\) of extensions of \(\mathcal{S}\) for which
    the Bloom filter answers yes
    Free the Bloom filter from memory
    \(D_{0} \leftarrow \mathcal{P}\)
    \(i \leftarrow 0\)
    while end of \(\mathcal{S}\) is not reached do
        \(P_{i} \leftarrow \emptyset\)
        while \(\left|P_{i}\right|<M\) do
            \(P_{i} \leftarrow P_{i} \cup\{\) next \(k\)-mer in \(\mathcal{S}\}\)
        for each \(k\)-mer \(m\) in \(D_{i}\) do
            if \(m \notin P_{i}\) then
                \(D_{i+1} \leftarrow D_{i+1} \cup\{m\}\)
        Delete \(D_{i}, P_{i}\)
        \(i \leftarrow i+1\)
    \(\mathrm{cFP} \leftarrow D_{i}\)
```


## Bloom filters \& De Bruijn Graphs

## So, we can make very small representation of the dBG. But it's navigational! We can also make them:

## Practical dynamic de Bruijn graphs

Dynamic \& membership

Victoria G. Crawford ${ }^{1, \dagger}$, Alan Kuhnle ${ }^{1, \dagger}$, Christina Boucher ${ }^{1}$, Rayan Chikhi ${ }^{2}$ and Travis Gagie ${ }^{3, *}$

${ }^{1}$ Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32306, USA, ${ }^{2}$ CNRS, CRIStAL, University of Lille, Lille, France and ${ }^{3} \mathrm{CeBiB}$ and School of Computer Science and Engineering, Diego Portales University, Santiago, Chile

Bioinformatics, 33, 2017, 1133-i141 doi: 10.1093/bioinformatics/bxx261 ISMB/ECCB 2017
deBGR: an efficient and near-exact representation of the weighted de Bruijn graph

Prashant Pandey ${ }^{1}$, Michael A. Bender ${ }^{1}$, Rob Johnson ${ }^{1,2}$ and Rob Patro ${ }^{1, *}$
${ }^{1}$ Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA, ${ }^{2}$ VMWare, Inc., Palo Alto, CA 94304
*To whom correspondence should be addressed.

## Other AMQs (the CQF)

Approximate Multiset Representation

| occupieds runends | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
|  | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| remainders |  | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c$ | $h_{1}(d)$ | $h_{1}(e)$ |  | $h_{1}(f)$ |

Works based on quotienting* \& fingerprinting keys
Let k be a key and $\mathrm{h}(\mathrm{k})$ a p -bit hash value


Clever encoding allows low-overhead storage of element counts (use key slots to store values in base $2^{r}-1$; smaller values $\Rightarrow$ fewer bits)

Careful engineering \& use of efficient rank \& select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)


## Other AMQs (the CQF)

Approximate Multiset Representation

| occupieds runends | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
|  | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| remainders |  | $h_{1}(a)$ | 1 (b) | $h_{1}$ (c | 1 (d) | $h_{1}(e)$ |  | $h_{1}(f)$ |

Works based on quotienting* \& fingerprinting keys
Let k be a key and $\mathrm{h}(\mathrm{k})$ a p -bit hash value
Determines position in array of size $2^{a} r$-bit slots
q-bits

Clever encoding allows low-overhead storage of element counts (use key slots to store values in base $2^{\text {r-1 }}$; smaller values $\Rightarrow$ fewer bits)

Careful engineering \& use of efficient rank \& select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)


## Other AMQs (the CQF)

Approximate Multiset Representation

| occupieds runends | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
|  | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| remainders |  | $h_{1}(a)$ | 1 (b) | $h_{1}$ (c | 1 (d) | $h_{1}(e)$ |  | $h_{1}(f)$ |

Works based on quotienting* \& fingerprinting keys
Let k be a key and $\mathrm{h}(\mathrm{k})$ a p -bit hash value
Determines position in array of size $2^{q} r$-bit slots $h(k)$ ——p-bits


Value stored in $r$-bit slot (fingerprint)

Clever encoding allows low-overhead storage of element counts (use key slots to store values in base $2^{\text {r-1 }}$; smaller values $\Rightarrow$ fewer bits)

Careful engineering \& use of efficient rank \& select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)


## The CQF

## Approximate Multiset Representation

| occupieds runends | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
|  | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| remainders |  | $h_{1}(a)$ | $h_{1}(b)$ | $h_{1}(c)$ | $h_{1}(d)$ | $h_{1}(e)$ |  | $h_{1}(f)$ |

## Works based on quotienting \& fingerprinting keys

Careful encoding allows low-overhead storage of element counts
Careful engineering \& use of efficient rank \& select leads to a fast, cache-friendly data structure


Figure 4: Number of bits per element for the RSQF, QF, BF, and CF . The RSQF requires less space than the CF amd less space than the BF for any false-positive rate less than $1 / 64$. (Higher is better)

(b) Successful lookups.

(c) Uniformly random lookups.

## Other efficient representations as well

JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 22, Number 5, 2015
(c) Mary Ann Liebert, Inc.

Pp. 336-352
DOI: $10.1089 / \mathrm{cmb} .2014 .0160$

On the Representation of De Bruijn Graphs

RAYAN CHIKHI, ${ }^{1,6}$ ANTOINE LIMASSET, ${ }^{3}$ SHAUN JACKMAN, ${ }^{4}$
JARED T. SIMPSON, ${ }^{5}$ and PAUL MEDVEDEV ${ }^{1,2,6}$

In addition to the theoretical bounds, this paper introduced an algorithm for constructing the contigs of the compacted dBG efficiently (bcalm), and an efficient representation based on building the FMindex over these contigs (dbgFM).

## CMSC423: Wrap-up and FAO

2. UNIVERSITY of MARYLAND

## End of Semester FAQ

1. When is the final?

- Thurs. May. 14 (8-10AM)

2. Where is the final?

- It will be made available on ELMS. I am working to optimize the format.

3. What content will be on the final?

- Technically, you are responsible for all material
- The final will cover content we have covered since the midterm

4. What will the format of the exam be?

- Same as the midterm. Short answer \& longer-form "thinking" questions. The final will not be proportionally longer -you will have more time per-question than the midterm.

5. How can I prepare for the final?

- Go over the lectures, go over your projects, go over the relevant chapters in the book, google about material you still don't get, ask us questions on piazza. STUDY AND BE COMFORTABLE WITH DYNAMIC PROGRAMMING!


## End of Semester FAQ

6. What grade will I get?

- I don't know (yet)
- The class will be curved so that the median grade is a B, with +/- grades going in ~3-4 point increments from there.
- The P/F system for the semester is OPT-OUT, if you don't optout you get a $P$ or $F$.
- A $P$ is anything $D$ - or above

7. Other questions?

## What we didn't cover.

Most of bioinformatics and computational biology:

- all of "long read" technology and method development
- metagenomics
- biological network analysis
- "systems" biology (e.g. regulatory inference)
- biostatistics and statistical interpretation of genomics results
- modern approaches of machine learning in bioinformatics (deep learning)
- much, much more.

