Efficient representation of de Bruijn Graphs

Assembly data is big

For very large datasets, even after filtering, a hash table over all k-mers may be too big.

Why is a hash table big?

How can we do better?

What if we just want to know "if" a k-mer is present?

Bloom Filters

Originally designed to answer *probabilistic* membership queries:

Is element e in my set S?

If yes, **always** say yes

If no, say no with large probability

False positives can happen; false negatives cannot.

Bloom Filters

For a set of size N, store an array of M bits Use k different hash functions, $\{h_0, ..., h_{k-1}\}$ To insert e, set A[$h_i(e)$] = 1 for 0 < i < k To query for e, check if A[$h_i(e)$] = 1 for 0 < i < k

Image by David Eppstein - self-made, originally for a talk at WADS 2007

Bloom Filters

If hash functions are good and sufficiently independent, then the probability of false positives is low and controllable.

How low?

Image by David Eppstein - self-made, originally for a talk at WADS 2007

Let q be the fraction of the m-bits which remain as 0 after n insertions.

The probability that a randomly chosen bit is 1 is 1-q.

But we need a 1 in the position returned by k different hash functions; the probability of this is $(1-q)^k$

We can derive a formula for the expected value of q, for a filter of m bits, after n insertions with k different hash functions:

$$E[q] = (1 - 1/m)^{kn}$$

Mitzenmacher & Unfal used the Azuma-Hoeffding inequaltiy to prove (without assuming the probability of setting each bit is independent) that

$$\Pr(|q - E[q]| \ge \frac{\lambda}{m}) \le 2\exp(-2\frac{\lambda^2}{m})$$

That is, the random realizations of q are highly concentrated around E[q], which yields a false positive prob of:

$$\sum_{t} \Pr(q=t)(1-t)^{k} \approx (1-E[q])^{k} = \left(1 - \left[1 - \frac{1}{m}\right]^{kn}\right)^{k} \approx (1 - e^{-\frac{kn}{m}})^{k}$$

*analysis of Mitzenmacher and Upfal

$$\sum_{t} \Pr(q=t)(1-t)^{k} \approx (1-E[q])^{k} = \left(1 - \left[1 - \frac{1}{m}\right]^{kn}\right)^{k} \approx (1 - e^{-\frac{kn}{m}})^{k}$$

This lets us choose optimal values to achieve a target false positive rate. For example, assume m & n are given. Then we can derive the optimal k

$$k = (m/n) \ln 2 \implies 2^{-k} \approx 0.6185 \text{ m/n}$$

We can then compute the false positive prob

$$p = (1 - e^{-(\frac{m}{n}\ln 2)\frac{n}{m}})^{(\frac{m}{n}\ln 2)} \implies$$
$$\ln p = -\frac{m}{n}(\ln 2)^2 \implies$$
$$m = -\frac{n\ln p}{(\ln 2)^2}$$

$$\sum_{t} \Pr(q=t)(1-t)^{k} \approx (1-E[q])^{k} = \left(1 - \left[1 - \frac{1}{m}\right]^{kn}\right)^{k} \approx (1 - e^{-\frac{kn}{m}})^{k}$$

This lets us choose optimal values to achieve a target false positive rate. For example, assume m & n are given. Then we can derive the optimal k

We can then compute the false positive prob

Detour: Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing a De Bruijn graph?

A given (k-1)-mer can only have $2^*|\Sigma|$ neighbors; | $\Sigma|$ incoming and | $\Sigma|$ outgoing neighbors — for genomes | $\Sigma| = 4$

To navigate in the De Bruijn graph, we can simply query all possible successors, and see which are actually present.

Bloom Filters & De Bruijn Graphs

How could this data structure be useful for representing a De Bruijn graph?

Say we have a bloom filter B, for all of the k-mers in our data set, and say I give you one k-mer that is truly present.

We now have a "navigational" representation of the De Bruijn graph (can return the set of neighbors of a node, but not select/iterate over nodes); why?

Bloom Filters & De Bruijn Graphs

But, a Bloom filter still has false-positives, right?

May return some neighbors that are not actually present.

Pell et al., PNAS 2012, use a lossy Bloom filter directly

Chikhi & Rizk, WABI 2012, present a *lossless* datastructure based on Bloom filters

Salikhov et al., WABI 2013 extend this work and introduce the concept of "cascading" Bloom filters

First, some bounds

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 22, Number 5, 2015 © Mary Ann Liebert, Inc. Pp. 336–352 DOI: 10.1089/cmb.2014.0160

Research Articles

On the Representation of De Bruijn Graphs

RAYAN CHIKHI^{1,6} ANTOINE LIMASSET,³ SHAUN JACKMAN,⁴ JARED T. SIMPSON,⁵ and PAUL MEDVEDEV^{1,2,6}

We use the term <u>membership data structure</u> to refer to a way of representing a dBG and answering k-mer membership queries. We can view this as a pair of algorithms: (CONST, MEMB). The CONST algorithm takes a set of k-mers S (i.e., a dBG) and outputs a bit string. We call CONST a constructor, since it constructs a representation of a dBG. The MEMB algorithm takes as input a bit string and a k-mer x and outputs true or false. Intuitively, MEMB takes a representation of a dBG created by CONST and outputs whether a given kmer is present. Formally, we require that for all $x \in \Sigma^k$, MEMB(CONST(S), x) is true if and only if $x \in S$.

An <u>NDS</u> is a pair of algorithms, CONST and NBR. As before, CONST takes a set of k-mers and outputs a bit string. NBR takes a bit string and a k-mer and outputs a set of k-mers. The algorithms must satisfy that for every dBG S and a k-mer $x \in S$, NBR(CONST(S), $x) = ext(x) \cap S$. Note that if $x \notin S$, then the behavior of NBR(CONST(S), x) is undefined. We observe that a membership data structure immediately implies an NDS because an NBR query can be reduced to eight MEMB queries.

In this section, we prove that a navigational data structure on de Bruijn graphs needs at least 3.24 bits per *k*-mer to represent the graph:

Theorem 1. Consider an arbitrary NDS and let CONST be its constructor. For any $0 < \epsilon < 1$, there exists a k and $x \subseteq \Sigma^k$ such that $|\text{CONST}(x)| \ge |x| \cdot (c - \epsilon)$, where $c = 8 - 3 \lg 3 \approx 3.25$.

Critical False Positives

Chikhi & Rizk

Critical False Positives

Idea of Chkhi and Rizk

Assume we want to represent specific set T0 of k-mers with a Bloom filter B1

Key observation: in assembly, not all k-mers can be queried, only those having k-1 overlap with k-mers known to be in the graph.

The set T1 of "critical false positives" (false neighbors of true k-mers) is *much* smaller than the set of all false positives and can be stored explicitly

Storing B1 and T1 is much more space efficient that other exact methods for storing T0. Membership of w in T0 is tested by first querying B1, and if $w \in B1$, check that it is *not* in T1.

• Represent T_0 by Bloom filter B_1

• Represent T_0 by Bloom filter B_1

Compute T₁ ('critical false positives') and represent it e.g.
 by a hash table

Represent T₀ by Bloom filter B₁

- Compute T₁ ('critical false positives') and represent it e.g.
 by a hash table
- Result (example): 13.2 bits/node for k=27 (of which 11.1 bits for B₁ and 2.1 bits for T₁)

Improving on Chikhi and Rizk's method

- Main idea: iteratively apply the same construction to T₁ i.e. encode T₁ by a Bloom filter B₂ and set of 'false-false positives' T₂, then apply this to T₂ etc.
- Cascading Bloom filters

• further encode T_1 via a Bloom filter B_2 and set T_2 , where $T_2 \subseteq T_0$ is the set of k-mers stored in B_2 by mistake ('false² positives')

- further encode T_1 via a Bloom filter B_2 and set T_2 , where $T_2 \subseteq T_0$ is the set of k-mers stored in B_2 by mistake ('false² positives')
- ▶ iterate the construction on T₂
- we obtain a sequence of sets T₀, T₁, T₂, T₃, ... encode by Bloom filters B₁, B₂, B₃, B₄, ... respectively

$$\models \mathsf{T}_0 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_4 \supseteq \dots, \mathsf{T}_1 \supseteq \mathsf{T}_3 \supseteq \mathsf{T}_5 \supseteq$$

<u>Lemma [correctness]</u>: For a k-mer w, consider the smallest i such that $w \notin B_{i+1}$. Then $w \in T_0$ if i is odd and $w \notin T_0$ if i is even.

- if $w \notin B_1$ then $w \notin T_0$
- if $w \in B_1$, but $w \notin B_2$ then $w \in T_0$
- if $w \in B_1$, $w \in B_2$, but $w \notin B_3$ then $w \notin T_0$
- etc.

Assuming infinite number of filters

Let $N=|T_0|$ and $r=m_i/n_i$ is the same for every B_i . Then the total size is

 $\frac{rN + 6rNc^{r} + rNc^{r} + 6rNc^{2r} + rNc^{2r} + ... = N(1+6c^{r})\frac{r}{1-c^{r}}}{|B_{1}| |B_{2}| |B_{3}| |B_{4}| |B_{4}| |B_{5}|}$

The minimum is achieved for r=5.464, which yields the memory consumption of 8.45 bits/node

Infinity difficult to deal with ;)

- In practice we will store only a small finite number of filters B_1, B_2, \ldots, B_t together with the set T_t stored explicitly
- t=1 → Chkhi&Rizk's method

 The estimation should be adjusted, optimal value of r has to be updated, example for t=4

k	optimal r	bits per k -mer
16	5.776737	8.555654
32	6.048557	8.664086
64	6.398529	8.824496
128	6.819496	9.045435

Table: Estimations for t=4. Optimal r andcorresponding memory consumption

Compared to Chikhi&Rizk's method

k	"Optimal" (infinite)	Cascading Bloom Filter	Data structure
	Cascading Bloom Filter	with $t = 4$	of Chikhi & Rizk
16	8.45	8.555654	12.0785
32	8.45	8.664086	13.5185
64	8.45	8.824496	14.9585
128	8.45	9.045435	16.3985

Table: Space (bits/node) compared to Chikhi&Rizk for *t*=4 and different values of *k*.

We can cut down a bit more ...

- Rather than using the same r for all filters $B_1, B_2, ..., we$ can use different properly chosen coefficients $r_1, r_2, ...$
- This allows saving another 0.2 0.4 bits/k-mer

Experiments I: E.Coli, varying k

- 10M E.Coli reads of 100bp
- 3 versions compared: 1 Bloom (=Chikhi&Rizk), 2 Bloom (t=2) and 4 Bloom (t=4)

Experiments II: Human dataset

564M Human reads of 100bp (~17X coverage)

Method	1 Bloom	2 Bloom	4 Bloom
Construction time (s)	40160.7	43362.8	44300.7
Traversal time (s)	46596.5	35909.3	34177.2
r (bits)	11.10	8.10	6.56
	$B_1 = 3250.95$	$B_1 = 2372.51$	$B_1 = 1921.20$
Bloom filters size (MB)		$B_2 = 292.65$	$B_2 = 496.92$
Diooni miters size (MD)			$B_3 = 83.39$
			$B_4 = 21.57$
False positive table size (MB)	$T_1 = 545.94$	$T_2 = 370.96$	$T_4 = 24.07$
Total size (MB)	3796.89	2524.12	2547.15
Size (bits/k-mer)	12.96	10.37	8.70

Experiments I (cont)

Efficiently enumerating cFP

Algorithm 1 Constant-memory enumeration of critical false positives

- Input: The set S of all nodes in the graph, the Bloom filter constructed from S, the maximum number M of elements in each partition (determines memory usage)
- 2: Output: The set cFP
- 3: Store on disk the set \mathcal{P} of extensions of \mathcal{S} for which the Bloom filter answers *yes*
- 4: Free the Bloom filter from memory
- 5: $D_0 \leftarrow \mathcal{P}$
- 6: *i* ← 0
- 7: while end of ${\mathcal S}$ is not reached do
- 8: $P_i \leftarrow \emptyset$
- 9: while $|P_i| < M$ do
- 10: $P_i \leftarrow P_i \cup \{\text{next } k \text{-mer in } S\}$
- 11: **for** each *k*-mer m in D_i **do**
- 12: **if** $m \notin P_i$ **then**
- 13: $D_{i+1} \leftarrow D_{i+1} \cup \{m\}$
- 14: Delete D_i , P_i
- 15: $i \leftarrow i+1$
- 16: cFP $\leftarrow D_i$

Note: Requires having the full set on disk, and being able to make multiple passes over it.

Bloom filters & De Bruijn Graphs

So, we can make very small representation of the dBG. But it's navigational! We can also make them:

Bioinformatics, 2018, 1–7 doi: 10.1093/bioinformatics/bty500 Advance Access Publication Date: 22 June 2018 Original Paper

OXFORD

Sequence analysis

Practical dynamic de Bruijn graphs

Victoria G. Crawford^{1,†}, Alan Kuhnle^{1,†}, Christina Boucher¹, Rayan Chikhi² and Travis Gagie^{3,*}

¹Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32306, USA, ²CNRS, CRIStAL, University of Lille, Lille, France and ³CeBiB and School of Computer Science and Engineering, Diego Portales University, Santiago, Chile

Bioinformatics, 33, 2017, i133–i141 doi: 10.1093/bioinformatics/btx261 ISMB/ECCB 2017

Dynamic &

membership

OXFORD

and even _____ weighted

deBGR: an efficient and near-exact representation of the weighted de Bruijn graph

Prashant Pandey¹, Michael A. Bender¹, Rob Johnson^{1,2} and Rob Patro^{1,*}

¹Department of Computer Science, Stony Brook University, Stony Brook, NY 11790, USA, ²VMWare, Inc., Palo Alto, CA 94304

*To whom correspondence should be addressed.

Other AMQs (the CQF)

Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Let k be a key and h(k) a p-bit hash value

Clever encoding allows low-overhead storage of element counts (use *key* slots to store *values* in base $2^{r}-1$; smaller values \Rightarrow fewer bits)

Careful engineering & use of efficient rank & select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)

Other AMQs (the CQF)

Clever encoding allows low-overhead storage of element counts (use *key* slots to store *values* in base $2^{r}-1$; smaller values \Rightarrow fewer bits)

Careful engineering & use of efficient rank & select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)

Other AMQs (the CQF)

Clever encoding allows low-overhead storage of element counts (use *key* slots to store *values* in base $2^{r}-1$; smaller values \Rightarrow fewer bits)

Careful engineering & use of efficient rank & select to resolve collisions leads to a fast, cache-friendly data structure

* Idea goes back at least to Knuth (TACOP vol 3)

The CQF

Approximate *Multiset* Representation

Works based on quotienting & fingerprinting keys

Careful encoding allows low-overhead storage of element counts

Careful engineering & use of efficient rank & select leads to a fast, cache-friendly data structure

0

0

20

Figure 4: Number of bits per element for the RSQF, QF, BF, and CF. The RSQF requires less space than the CF and less space than the BF for any false-positive rate less than 1/64. (Higher is better)

(b) Successful lookups.

40

Load Factor

60

80

100

20

(c) Uniformly random lookups.

40

Load Factor

60

80

100

Other efficient representations as well

In addition to the theoretical bounds, this paper introduced an algorithm for constructing the contigs of the compacted dBG efficiently (bcalm), and an efficient representation based on building the FMindex over these contigs (dbgFM).

CMSC423: Wrap-up and FAQ

End of Semester FAQ

- 1. When is the final?
 - Thurs. May. 14 (8-10AM)
- 2. Where is the final?
 - It will be made available on ELMS. I am working to optimize the format.
- 3. What content will be on the final?
 - Technically, you are responsible for all material
 - The final will cover content we have covered since the midterm
- 4. What will the format of the exam be?
 - Same as the midterm. Short answer & longer-form "thinking" questions. The final will *not* be proportionally longer —you will have more time per-question than the midterm.
- 5. How can I prepare for the final?
 - Go over the lectures, go over your projects, go over the relevant chapters in the book, google about material you still don't get, ask us questions on piazza. STUDY AND BE COMFORTABLE WITH DYNAMIC PROGRAMMING!

End of Semester FAQ

- 6. What grade will I get?
 - I don't know (yet)
 - The class will be curved so that the median grade is a B, with +/- grades going in ~3-4 point increments from there.
 - The P/F system for the semester is OPT-OUT, if you don't optout you get a P or F.
 - A P is anything D- or above
- 7. Other questions?

What we didn't cover.

Most of bioinformatics and computational biology:

- all of "long read" technology and method development
- metagenomics
- biological network analysis
- "systems" biology (e.g. regulatory inference)
- biostatistics and statistical interpretation of genomics results
- modern approaches of machine learning in bioinformatics (deep learning)
- much, much more.